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Adversarial Examples
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arXiv preprint arXiv:1412.6572 (2014).




Neural Network Verification

- Robustness property:
argmax; h(x); = argmax; h(x');
vx' € BE(x)
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Problem Statement

- Adversarial accuracy requires increased network capacity
- Verification gets increasingly difficult with network depth
= Small, provably trained networks have low standard accuracy

= ACE: Compose networks with different strengths
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ACE - Compositional Architecture

- For every sample decide whether to
use core- or certification-network

- Key components:
* Deep standard network
« Shallow provable network

« Selection mechanism

« Train network to predict certification
difficulty

- Evaluate certification network entropy




Effectiveness of Selection
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ACE Results

- Significant reduction in certified
accuracy loss, for gains in natural
accuracy

- Effect observed across:
- Network architectures
- Perturbation sizes
- Datasets
- Certification and training methods

Balunovic, Mislav, and Martin Vechev. "Adversarial training and provable defenses: Bridging the gap." ICLR 2019
Zhang, Huan, et al. "Towards stable and efficient training of verifiably robust neural networks." arXiv:1906.06316 2019
Xu, Kaidi, et al. "Automatic perturbation analysis for scalable certified robustness and beyond.“ NIPS 2020
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Thank you for your attention!
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