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Abstract
Creating and maintaining an up-to-date set of security rules

that match misuses of crypto APIs is challenging, as crypto

APIs constantly evolve over time with new cryptographic

primitives and settings, making existing ones obsolete.

To address this challenge, we present a new approach to

extract security fixes from thousands of code changes. Our

approach consists of: (i) identifying code changes, which

often capture security fixes, (ii) an abstraction that filters

irrelevant code changes (such as refactorings), and (iii) a clus-
tering analysis that reveals commonalities between semantic

code changes and helps in eliciting security rules.

We applied our approach to the Java Crypto API and

showed that it is effective: (i) our abstraction effectively

filters non-semantic code changes (over 99% of all changes)

without removing security fixes, and (ii) over 80% of the code

changes are security fixes identifying security rules. Based

on our results, we identified 13 rules, including new ones

not supported by existing security checkers.

CCS Concepts • Security and privacy → Systems se-
curity; Cryptanalysis and other attacks; Software security
engineering;
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1 Introduction
Many critical data breaches nowadays are caused by an incor-

rect use of crypto APIs. Developers often fail to understand

and correctly configure cryptographic primitives, such as

cryptographic ciphers, secret keys, and hash functions, lead-

ing to severe security vulnerabilities that can be abused by

attackers [15, 24]. As a result, from 100 inspected Android ap-

plications, researchers discovered severe man-in-the-middle

attacks in 41 of them and were able to gather a large variety

of sensitive data [14]. As another data point, researchers

have defined 6 common types of mistakes in using crypto

APIs and found that a staggering percentage, 88%, out of

thousands of analyzed Android applications have at least

one of these mistakes [12].

To resolve this problem, we argue that developers must

check their applications against an up-to-date and compre-

hensive list of security rules regarding potential misuses of

crypto APIs. Unfortunately, creating and updating such a

list can be quite challenging as security is a constantly mov-

ing target: crypto APIs evolve over time as security experts

continue to discover new attacks against existing primitives.

For example, researchers have recently discovered the first

collision against the SHA-1 cryptographic hash function [30],

and are now advising developers to shift to safer alternatives,

such as SHA-256.

This Work: From Code Changes to API Usage Rules.
In this paper, we propose a new approach for learning the

correct usage of an API based on code changes, which are

readily available in public repositories today. We show that

code changes that fix security problems are more common

than changes that introduce them, i.e. most problems were

introduced in the initial implementation, not in a fix. The

immediate benefit of this idea is that we can produce mean-

ingful results even when most developers misuse an API (as

it happens with the Java Crypto API). For instance, even if

most developers use an outdated, less-secure cryptographic

primitive (e.g. SHA-1), our approach can identify, based on a

couple of code changes, that developers are switching to a

new, more secure primitive (e.g. SHA-256).

Key challenge. Attempting to learn from code changes is

difficult because many changes do not semantically affect

how theAPI is used (e.g, theymay be a syntactic re-factoring).
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class AESCipher {

Cipher enc;

- protected void setKey(Secret key) {

+ protected void setKeyAndIV(Secret key , String iv) {

+ byte[] bytes;

+ IvParameterSpec ivSpec;

try {

+ ivBytes = Hex.decodeHex(iv.toCharArray ());

+ ivSpec = new IvParameterSpec(ivBytes );

- enc = Cipher.getInstance("AES");

- enc.init(Cipher.ENCRYPT_MODE , key);

+ enc = Cipher.getInstance("AES/CBC/PKCS5Padding");

+ enc.init(Cipher.ENCRYPT_MODE , key , ivSpec );

} catch {...}

} }

class AESCipher {

Cipher enc;

- protected void setKey(Secret key) {

+ protected void setKeyAndIV(Secret key , String iv) {

+ byte[] bytes;

+ IvParameterSpec ivSpec;

try {

+ ivBytes = Hex.decodeHex(iv.toCharArray ());

+ ivSpec = new IvParameterSpec(ivBytes );

} catch {...}

} }

§3

Static

analysis

§4

Combine

& filter

class AESCipher {

Cipher enc;

- protected void setKey(Secret key) {

+ protected void setKeyAndIV(Secret key , String iv) {

+ byte[] bytes;

+ IvParameterSpec ivSpec;

try {

+ ivBytes = Hex.decodeHex(iv.toCharArray ());

+ ivSpec = new IvParameterSpec(ivBytes );

} catch {...}

} }

Code Changes

Cipher init IVParam

Cipher getInst "AES"

Cipher getInst "AES/CBC"

KeySpec <init> constbyte[]

KeySpec <init> ⊤byte[]

MsgDigest <init> "MD5"

MsgDigest <init> "SHA256"

Usage Changes

Hierarchical clustering over
semantic usage changes

Elicit

rules

Rule 1: Use the BouncyCastle provider for Cipher
Rule 2: Use SHA-256 instead of SHA-1

.

.

.

Security Rules

Figure 1. Overview of our approach for learning semantic usage changes and extracting security rules.

To address this challenge, we develop an abstraction tailored

to crypto APIs that can capture relevant security properties.

Our abstraction captures the semantic features of how a

code change affects crypto API usage (e.g., how argument

type changes affect the cryptographic mode), which enables

filtering of unrelated or non-semantic changes.

Application to the Java Crypto API. We implemented

an end-to-end system, called DiffCode, of our approach

for learning semantic changes to the Java Crypto API. To

demonstrate the effectiveness of DiffCode, we applied it

to thousands of code changes collected from GitHub. Diff-

Code produces only few relevant changes that let us derive

new security rules. Based on these, we created a new secu-

rity checker for the Java Crypto API called CryptoChecker

which has more rules than prior security checkers. For in-

stance, a novel rule derived from data is to switch from the

default Java provider to BouncyCastle. The reason is that

BouncyCastle does not have a 128 bit key restriction [3].

Main Contributions. Our main contributions are:

• A new data-driven approach that learns rules from

code changes where the learned rules capture the cor-

rect usage of an API (Section 2).

• An abstraction tailored to cryptoAPIs that captures the

semantic structure of code changes while abstracting

away syntactic details. This abstraction is essential to

distilling thousands of concrete code changes into few

semantically meaningful ones (Section 3).

• An end-to-end system, called DiffCode, for discov-

ering relevant code changes. Our system consists of:

(i) a lightweight AST-based program analysis that sup-

ports (partial) code snippets, (ii) abstraction of crypto

API usage changes, and (iii) filtering combined with

clustering analysis to ease users in inspecting relevant

code changes (Sections 4-5).

• An extensive evaluation of DiffCode on the Java

Crypto API. Using DiffCode, we identified 13 secu-

rity rules, including several previously unknown ones

(Section 6).

We remark that while we focus on crypto APIs, the approach

is general and can be applied to other types of APIs.

2 Overview of Approach
We now present our approach to extracting information

about API usages from thousands of code changes. At a

high-level, our method is based on two key insights: Our

first insight is to focus on code changes, which identify con-

crete fixes that developers have applied to the code. The old

version of the program (before applying the change) often

resembles incorrect (or, insecure) usage of the API. Our ap-

proach thus differs from existing statistical “Big Code”-type

of approaches, which focus on discovering statistically com-

mon API usages (e.g., [27]). Such statistical approaches are

bound to produce less meaningful results in settings where

the majority of developers misuse the API, as is the case

of crypto APIs. In contrast, our method can discover incor-

rect usage even when only few developers have applied a

correct fix. Our second insight is to leverage program ab-

straction to derive meaningful, semantic information about

code changes. This is necessary to avoid irrelevant syntactic

code modifications, such as refactoring.

We depict the flow of our learning approach in Figure 1.

We now briefly describe its main steps.

Step 1: Mining Code Changes. The first step consists

of collecting code changes from open-source repositories.
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Since we are usually interested in extracting usage changes

for particular API classes, such as Cipher and SecretKeySpec

from the Java Crypto API, we fetch only patches for classes

that use the target API classes. We explain how we collected

thousands of code changes for the Java Crypto API, which

we used in our experiments, in Section 6.

Step 2:AbstractUsageChanges via StaticAnalysis. Pro-

gram abstraction is a key element in our approach that en-

ables us to distill semantic security fixes from thousands of

code changes. Developers often commit patches that refac-

tor the code, e.g. to improve readability and performance,

without making semantic changes to the target API classes.

Program abstraction can be used to discover that such syn-

tactic modifications do not result in semantic changes to the

program and how it uses the API.

DiffCode downloads both the old and the new versions of

the program and statically analyzes each version. It first dis-

covers all different usages of a target API and extracts seman-

tic features about each usage. These features capture which

methods are invoked on objects of the API as well as informa-

tion about the arguments passed to these methods. A usage

change is then identified by the change in these features.

For instance, suppose that in the old version the program

creates an object of type Cipher by calling getInstance()

and passing "AES" as an argument. Further, suppose that in

the new version the program creates the same object with

a call to getInstance() with arguments "AES/CBC" and an

initialization vector object. DiffCode would detect this as a

semantic change: the program changes the mode of the AES

cipher from default Electronic Code Book mode (ECB) to the

more secure Chain-Block Cipher mode (CBC). We describe

the program abstraction we use in Section 3 and how it is

derived using static analysis in Section 5.1.

Step 3: Filter and Cluster Usage Changes. The usage

changes derived from each project are collected and pro-

cessed together. Thanks to the abstraction, DiffCode filters

out usage changes that are not semantic fixes. For example,

if features are neither added nor removed for a particular

API usage, then the usage code is likely a refactoring and is

thus filtered. We apply additional filters to remove duplicate

usage changes and changes that either only add or remove

features, as these often correspond to adding a new usage of

the API or removing an existing one.

In the beginning, DiffCode starts with tens of thousands

of code changes and after the filtering step, there are only

186 remaining usage changes. Yet, we checked that this filter-

ing step does not remove previously known security-related

rules. Then, DiffCode uses a classic hierarchical clustering

algorithm on these 186 changes (Section 4) and produces clus-

ters that correspond to security-related rules. At this stage,

we manually inspected the clusters and devised security

checks that we encoded into a tool called CryptoChecker.

The last step in DiffCode is manual for several reasons.

First, we did not focus on automating this last step as it in-

volves inspecting only tens of clusters of changes. Second, we

manually inspect, document, and explain the derived rules

to users. Finally, we remove false positives that introduce

security problems as opposed to fix it – in fact, these are

easy to filter out, even automatically, because there are fewer

commits in clusters that introduce problems than in clusters

that fix them.

Overall, we derived 13 security rules, some of which are

new rules. The new rules are currently not included in exist-

ing security checkers for crypto API misuse. Our rules are

described in Section 6.

3 Abstraction for API Changes
We now present our abstraction for representing the seman-

tic structure of security fixes applied to crypto APIs. We first

present the terminology, then discuss an abstraction that

given (a single version of) a program returns a set of API

usage. Finally, given two program versions, we show how

to leverage the abstraction in order to capture API usage
changes (which may correspond to actual fixes). In the sec-

tions that follow we show how to leverage this abstraction

for learning security rules.

3.1 Example
We first present an example which we later use to illustrate

our definitions. In Figure 2(a) we show the code patch for a

Java class called AESCipher. The code lines removed from the

old version are shown in red (and marked with -) and the

added lines are shown in green (and marked with +). This

class creates two objects of type Cipher, enc and dec, which

are used for encryption and, respectively, decryption.

Old Version. The old version of AESCipher creates the two

objects enc and dec using the method getInstance with the

string "AES" passed as an argument. The instance enc is then

initialized using init with arguments Cipher.ENCRYPT_MODE,

an integer constant defined in the CipherAPI, and key, which

represents the symmetric key to be used for encryption. The

object dec is also initialized with key, but this time the class

uses the Cipher.DECRYPT_MODE constant.

New Version. In the new version, the developer changes

the signature of setKey, which now also takes as argument

the object iv of type String. Further, the objects enc and

dec are initialized using the string "AES/CBC/PKCS5Padding"

(instead of "AES"). With this change, the developer explic-

itly expresses that the two ciphers must use the AES cipher

in Chain Block Cipher mode (CBC) as well as the PKCS5

padding scheme. When the two Cipher objects are initial-

ized, the developer passes as argument the object ivSpec of

type IVParameterSpec to define the initialization vector that

the ciphers must use for the first block they process. The
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1 class AESCipher {

2 Cipher enc , dec;

3 - final String algorithm = "AES";

4 + final String algorithm = "AES/CBC/PKCS5Padding";

5

6 - protected void setKey(Secret key) {

7 + protected void setKeyAndIV(Secret key , String iv) {

8 + byte[] bytes;

9 + IvParameterSpec ivSpec;

10 try {

11 + ivBytes = Hex.decodeHex(iv.toCharArray ());

12 + ivSpec = new IvParameterSpec(ivBytes );

13 enc = Cipher.getInstance(algorithm );

14 - enc.init(Cipher.ENCRYPT_MODE , key);

15 + enc.init(Cipher.ENCRYPT_MODE , key , ivSpec );

16 dec = Cipher.getInstance(algorithm );

17 - dec.init(Cipher.DECRYPT_MODE , key);

18 + dec.init(Cipher.DECRYPT_MODE , key , ivSpec );

19 } catch {...}

20 }

21 }

(a) Code changes to two objects (enc and dec) of type Cipher

Cipher

getInstance init

arg1:"AES" arg1:ENCRYPT_MODE arg2:Secret

(b) Usage DAG of the object enc before the change

Cipher

getInstance init

arg1:"AES/CBC/PKCS5Padding"

arg1:ENCRYPT_MODE arg2:Secret arg3:IVParameterSpec

<init>

arg1:⊤byte[]

(c) Usage DAG of object enc after the change

CipherRemoved features: getInstance arg1:"AES"

CipherAdded features: getInstance arg1:"AES/CBC/PKCS5Padding"

Cipher init arg3:IVParameterSpec

(d) Removed (red) and added (green) features that capture the usage change of object enc.

Figure 2. Code changes to two objects of the type Cipher and the usages change derived for object enc.

developer also adds lines 11 and 12 to initialize the ivSpec

object using the string iv passed as argument to the method.

The Need for Abstraction. If we consider this example

purely syntactically, the lines that call Cipher.getInstance

remain unchanged. At the same time, most of the syntactic

changes are related to renaming the setKey method and in-

troducing an extra parameter. However, if we perform the

right program analysis before comparing the two versions,

we can abstract the semantically relevant changes for each

of the Cypher objects and concisely capture the semantics of

the change.

In later sections, we explain how DiffCode learns from

the example in Figure 2(a) by illustrating the steps on Fig-

ures 2(b), 2(c), and 2(d).

3.2 Basic Notation and Terminology
Before presenting our abstraction, we describe our notation

and terminology and define what we mean by API usage.

Types and Methods. We restrict our attention to crypto

APIs for languages such as Java that support base types

(e.g., int, byte, int[], byte[]) and object types which are

stored in the heap. We consider an API that defines a set

of types Types = {t1, . . . , tn}. For instance, the Java Crypto

API defines the type Cipher, a cryptographic cipher used for

encryption and decryption.

A method signature is given by m([t0], t1, . . . , tk ) : tret
where t0 is the type of the object on which the method is

invoked (the this object),k is themethod’s arity, each ti is the
type of the ith argument, and tret is the type of object/value
returned by the method. Note that t0 is defined only for non

static methods. We write Methods to denote the set of all

methods.

For a given type t , Methodst ⊆ Methods denotes the set
of all methods that (i) accept an instance of type t as an
argument or (ii) create a new instance of type t . For ex-
ample, the set MethodsIVParameterSpec contains the method

Cipher.init(int, Key, AlgorithmParameterSpec), as it ac-

cepts objects of type IVParameterSpec as the third argument.

Further, it contains IVParameterSpec.<init>(byte[]), which

creates a new instance of type IVParameterSpec. Note that

in addition to constructor methods, Methodst may also con-

tain factory methods. For example, MethodsCipher contains
factory method Cipher.getInstance(String):Cipher.

Program State. We assume standard program semantics

of an object-oriented language. A program state σ ∈ States
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is a tuple σ = (objs,η,∆) with:

objs ⊆ Objs
Vals = objs ∪ BaseValues
η ∈ Heaps : objs × Fields → Vals
∆ ∈ Stores : Vars → Vals
States = P(Objs) × Heaps × Stores

where Objs is the set of all possible objects, BaseValues is the
set of all values of base types (such as values of type int and

byte), Fields is the set of fields, and Vars is the set of all local
variables. A program state σ = (objs,η,∆) tracks: (i) the set
of allocated objects objs, (ii) the state of the heap η that maps

the fields of allocated objects to values (either an allocated

object or a value of a base type), and (iii) the state of local
variables which store values.

Concrete API Usages. A standard way to define a concrete
usage of a given type t is to collect the set of all method

calls to an object of type t together with the program states

associated at each method call; cf. [27]. Note that a program

usually defines multiple objects of the same type t that are
then used in different ways, resulting in multiple concrete

usages of type t .
We define the concrete usages as the map:

CUses : Objs → P(Methods × States) .

That is, for a given object o ∈ Objs of type t , the set of

pairs CUses(o) = {(m1,σ1), . . . , (mn ,σn)} contains the con-
structor/factory methodmi ∈ Methodst used to create o as
well as methodsmj ∈ Methodst that take as argument the

object o. A methodm may be invoked multiple times with

object o at different program states, resulting in multiple

pairs (m,σ1), . . . , (m,σk ) in CUses(o).
We note that the concrete usages CUses for a given pro-

gram will typically not be computable in practice as the

program may allocate an unbounded set of objects and may

have an unbounded number of states. Our abstraction, de-

fined below, allows us to capture these unbounded sets with

a finite set of abstract usages.

3.3 Abstraction of API Usage
We now present our abstraction which we use to capture

the usage of a particular API type. Our abstraction consists

of: (i) a heap abstraction, to represent the unbounded set of

concrete objects with finitely many allocation sites, (ii) base-
types abstraction, and (iii) per-object Cartesian abstraction

that keeps track ofmethod calls and abstract states associated

with the abstract objects. We define this abstraction below.

We will explain how to apply it to programs using static

analysis in Section 5.1.

Heap Abstraction. Since a program may instantiate a po-

tentially unbounded number of objects of a given type, we

Base type Abstract Domain
int Ints(P) ∪ {⊤int}

int[] IntArrays(P) ∪ {⊤int[]}

string Strs(P) ∪ {⊤str}

string[] StrArrays(P) ∪ {⊤str[]}

byte {constbyte,⊤byte}

byte[] {constbyte[],⊤byte[]}

Figure 3. Abstract base-type values for a program P .

use a per-allocation-site abstraction. That is, each construc-

tor/factory method, such as Cipher.getInstance(String), re-

sults in one abstract object identified by the statement’s la-

bel. We denote by AObjs the set of abstract objects. We use

⊤obj ∈ AObjs to represent that the allocation of the abstract

object is unknown; e.g., the allocation of the method param-

eter key is not defined in Figure 2(a).

Base-types Abstraction. In addition to abstracting ob-

jects, we also abstract the base-type values as they also

range over unbounded sets. In Figure 3 we summarize the

abstract domains that we use. Given a program P , we write
Ints(P) to denote the set of integer constants that appear

in P (e.g., 0 ∈ Ints(P) if there is a statement int x = 0 in

P ), and IntArrays(P) to denote the set of integer array con-

stants that appear in P (extracted from statements such as

int[] arr = {0,1,2,3}). Integer variables and fields are as-

signed (i) an integer constant from Ints(P) or (ii) the sym-

bol ⊤int, which represents the set of all integers. Similarly,

we also abstract strings and string arrays. We designed our

abstraction to keep the values for integer and string con-

stants as these often represent configuration parameters

(e.g. Cipher.ENCRYPT_MODE) and configuration strings (e.g.

"AES/CBC/NoPadding").

Byte values are abstracted to constbyte (to represent con-

stant byte values) and ⊤byte (to represent non-constant byte

values). Byte arrays are similarly abstracted to constbyte[]
and ⊤byte[]. We remark that we represent constant byte ar-

rays as constbyte[] to abstract program-specific values, such

as hard-coded keys and initialization vectors.

We note that our abstraction is tailored to crypto APIs.

To precisely abstract uses of other APIs, one may choose a

different abstraction (e.g., Interval or Polyhedra numerical

domains [10]).

Abstract State. Let AVals = AObjs ∪ ABaseValues be the
set of abstract objects and abstract base-type values, where

ABaseValues is the union of all abstract domains derived

from P . An abstract state σa = (objsa ,ηa ,∆a) consists of

a set of abstract objects objsa ⊆ AObjs, an abstract heap

ηa : AObjs × Fields → AVals, and abstract state of local vari-

ables ∆a
: Vars → AVals. We denote by AStates the set of all

abstract states.
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Abstract API Usage. We lift our notion of concrete usages

to abstract usages, denoted by AUses, where instead of track-
ing the usage of each object we track the usage of abstract

objects. Further, instead of collecting the concrete states at

method calls we collect abstract states. Formally, abstract

usages are captured with a map:

AUses : AObjs → P(Methods × AStates) .

That is, for a given abstract object oa ∈ AObjs of type t ,
we obtain a set AUses(oa) = {(m1,σ

a
1
), . . . , (mk ,σ

a
k )} where

mi ∈ Methodst is a method and σa
i is an abstract state. Each

AUses(oa) defines one abstract usage, while together all ab-
stract objects in a program define the set of all abstract usages.

We note that since there are finitely many abstract objects,

methods, and abstract states, the abstract usages for a given

program are also finitely many.

3.4 Abstract Usages as Directed Acyclic Graphs
Given the abstract usages defined by AUses and an abstract

object oa , we construct a rooted directed acyclic graph (DAG)
G = (N ,E, r ) with nodes

N ⊆ (Methods × AStates) ∪ (N × AVals) ,

edges E ⊆ N ×N , and root r = (0,oa) ∈ N . Each node in the

DAG is either a pair (m,σa) of a methodm and an abstract

state σa
or a pair (i,a) where i ∈ N represents an argument

index and a ∈ AVals is an abstract value (i.e., an abstract

object or base-type value).

We label the nodes in the graph as follows. A node (m,σa)

is labeled by the signature ofm. A node (i,a) is labeled by

(i,a) if a is an abstract base-type value (e.g., ⊤int); otherwise,

a is an abstract object and the node is labeled by (i, type(a)),
where type(a) returns the type of a (e.g., Cipher).

Examples of these DAGs are given in Figures 2(b) and 2(c).

We depict node labels as arg1 : AES instead of (1, AES) to
emphasize that 1 represent an argument index. Further, we

omit the index 0 in root node labels (as roots always have

index 0). Below we explain how these DAGs are constructed.

Constructing a DAG. To construct the graph for an ab-

stract object oa , we first add the root (0,oa). Then, starting
from the root, the tree is iteratively constructed by perform-

ing the following two steps on each node (i,abs):

1. For each (m,σa) ∈ AUses(abs), we add a node (m,σa)

and an edge ((i,abs), (m,σa)).

2. For each node (m,σa) created in step (1), we add up

to k children where k is the arity ofm. First, for each

parameterpi ofm, we add a node (i,absi ), whereabsi =
∆a(pi ). Then, we add an edge ((m,σa), (i,absi )) if it
does not introduce a cycle in the graph.

The above steps are iteratively performed in a breath-first

manner by first expanding the root node (depth 0 of the

rooted DAG). Then, we process the nodes (i,abs) at depth 2

of the DAG where abs ∈ AObjs is an abstract object such

that abs , ⊤obj. Note that we skip the nodes at depth 1 as

they contain only method nodes. We continue this process

until a fixed depth n (in our experiments, we set n to 5).

Example. To illustrate the graph construction we refer to

the example in Figure 2. The code after the change (green

and white lines in Figure 2(a)) has two abstraction objects

of type Cipher — one allocated at line 13 and another one at

line 16. In Figure 2(c) we depict the graph constructed for

the abstract object l13 (i.e., the enc object). The root node of

the graph is (0, l13), and it is labeled by (0, Cipher) because
the type of l13 is Cipher. The abstract usage of l13 is given by

AUses(l13) = {(getInstance,σa
13
), (init,σa

15
)} .

The root node therefore has two children nodes labeled by

getInstance and init, respectively. Node getInstance has

one child (1, AES/CBC/PKCS5Padding) because

∆a
l13
(algorithm) = AES/CBC/PKCS5Padding .

Node init has three children. The first one is (1, ENCRYPT_MODE),
where ENCRYPT_MODE is an integer constant defined in Cipher.

The second child is (2,⊤obj) and is labaled by (1, Secret). This
child has no further children as ∆a

l13
(key) = ⊤obj (the alloca-

tion of object key is not defined in the code). Finally, the third

child is (3, l12) and is labeled by (3, IVParameterSpec). The ab-
stract object l12 is recursively expanded with the constructor

method <init> and it’s argument ⊤byte[].

3.5 From DAGs to Usage Changes
To capture the semantic meaning of a code change with

respect to a type t , we derive the abstract usages AUses1
and AUses2 for the old and, respectively, the new version

of the program. We proceed in three steps, as depicted in

Figure 4. First, for each version, we derive all rooted DAGs

for all abstract objects of type t , as explained in Section 3.4.

We note that we may obtain multiple DAGs for each version

(determined by the number of allocation sites of objects of

type t in a version). Second, we pair the DAGs of the old

version with those of the new version based on a distance

metric (defined below) that captures the similarity between

two DAGs. Finally, given a pair of DAGs, we derive features

that describe the semantic change between the two usages.

We refer to these features as usage change. The result of the
three steps above is a set of usage changes.

Distance Between DAGs. We first define a metric that

reflects the distance between two DAGs G1 = (N1,E1, r1)
and G2 = (N2,E2, r2). The distance between the DAGs is

given by a intersection-over-union measure over the sets of

nodes:

dist(G1,G2) = 1 −
|N1 ∩ N2 |

|N1 ∪ N2 |
.

This measure reflects the change in terms of nodes in the

DAGs that differ in the two graphs while also respecting
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Figure 4. Step-by-step derivation of usage changes from a code change defining two versions of the program

the edges. For instance, for the DAGs G1 and G2 depicted in

Figures 2(b) and 2(c), respectively, we get dist(G1,G2) =
1

2
.

Pairing DAGs. Suppose that the DAGs derived from the

old version are Vold = {A1, . . . ,An} and those derived from

the new version are Vnew = {B1, . . . ,Bk }; we depict these
as old/new version DAGs in Figure 4. For simplicity, we

assume that |Vold | = |Vnew |, i.e. the two versions have an

equal number of DAGs; if this is not the case, we extend

the version with fewer DAGs with DAGs of the form G =
({r }, ∅, r ), which only contain a root node r labeled with

the type t . We solve a maximum matching problem to map

the DAGs in Vold to unique DAGs in Vnew (and vice versa),

such that we minimize the sum of the distance metrics of the

paired graphs. The mapping is a bijectionm ⊆ Vold ×Vnew
whenever |Vold | = |Vnew |.

Formally, let M be the set of all possible mappings. The

distance for a given mappingm ∈ M is given by:

mdist(m) =
∑

(G1,G2)∈m

dist(G1,G2) .

To pair the DAGs in the two versions we find a minimum

distance mapping according to mdist(m). Note that there

may be multiple such mappings.

For the example provided in Figure 4, the mapping pro-

duces the pairs (A1,Bk ), (A2,B2), and so forth. We color the

nodes in green/red to emphasize which nodes in the paired

DAGs are different.

From DAG Pairs to Usage Changes. We use the follow-

ing notation to define the derivation of usage changes. Let

G = (N ,E, r ) be a rooted DAG. Given two paths p and p ′, we
write p ≺ p ′ if p is a strict prefix of p ′, i.e. the length of p is

strictly smaller than that of p ′ and p is a prefix of p ′. For a
set of paths P , we define

Shortest(P) = {p ∈ P | ¬∃p ′ ∈ P . p ′ ≺ p} .

That is, Shortest(P) contains a path p if and only if no other

path is a strict prefix of p. For example, for the set of paths

P = {a → b,a → b → c,b → c} ,

we get Shortest(P) = {a → b,b → c}.
Given twoDAGsG1 andG2, we define the shortest-removed

paths of G1 and G2, denoted by Removed(G1,G2), as:

Removed(G1,G2) = Shortest(Paths(G1) \ Paths(G2)) .

That is, Removed(G1,G2) contains the shortest prefixes inG1

that are not in G2.

We define the usage change between two DAGsG1 andG2

as a pairDiff (G1,G2) = (F−, F+)where F− = Removed(G1,G2)

and F+ = Removed(G2,G1). That is, the set of paths F
−
con-

tains the shortest prefixes removed from G1 while F
+
con-

tains those that are added to G2. In Figure 2(d) we show in

detail the usage change derived from the DAGs depicted in

Figures 2(b) and 2(c).

4 Clustering Semantic Usage Changes
In this section, we describe our approach for filtering and

clustering the obtained usage changes, that is, the output of

Figure 4 described earlier. Our filters will aim to eliminate any

irrelevant, non-semantic usage changes. Then, the remaining

semantic usage changes will be clustered so to ease users in

inspecting them and eliciting security rules.

4.1 Extract Usage Changes
The input to the first step is a set of code changes. Given this

input, we derive the usage changes from each code modifica-

tion, as described in Section 3. Note that each code change

results in a set of usage changes because the old and new

versions of the program may instantiate multiple objects of

the same type and use them differently in the code.
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4.2 Filter Uninteresting Usage Changes
The goal of this procedure is, given the large list of usage

changes, to filter out the ones that are not relevant for deriv-

ing security rules. Uninteresting changes either do not affect

crypto APIs, refactor crypto API calls, or introduce/delete

code (as opposed to fixing an error). The input of the filtering

procedure is a list of usage changes. Each usage change is

a pair (F−, F+) of paths where F− contains the features that

are removed from the old version and F+ contains the fea-
tures added to the new version. We filter out a usage change

(F−, F+) if one of the following conditions hold:

No-changes (fsame): Both F− and F+ are empty sets. This

condition indicates that, with respect to our abstrac-

tion, the API usage is identical in both the old and the

new version of the program. This means that there

is no actual semantic change of API usage. This filter

removes the majority of the changes.

No-removals (fadd): F− is the empty set. This condition

typically indicates that a usage of type t was added
to the code. We do not use such changes since they

simply say that the crypto API was introduced.

No-additions (frem): F+ is the empty set. This condition

indicates that a usage of type t was removed for the

code.

No-duplicates (fdup): There is another usage change

(F ′−, F ′+) in the set such that F− = F ′−
and F+ = F ′+

.

This condition indicates that there is an identical usage

change in the set of usage changes.

To see the effect of each filter, we run them in turn and report

the number of remaining usage changes at stages after each

filter. We remark that fadd and frem together subsume fsame,

but we still consider fsame separately to report the number

of changes that do not affect crypto APIs (shown later in

Figure 6).

4.3 Cluster Usage Changes
After we obtain the filtered semantic usage changes, we clus-

ter them together to report insights about how developers

fix crypto APIs. Clustering is useful, because multiple sim-

ilar changes would indicate a common misconception or a

common fix regarding the API. To perform this step, we use

classic clustering algorithms based on the same features used

in the previous steps.

We now define ametric that captures the distance between

a pair of usage changes. Our metric compares the features

that the usage changes add and remove from the new and,

respectively, the old version. We first define a measure of

distance between two paths and then lift this measure to

compare usage changes.

Distance Between Two Paths. We use the following no-

tation. Given a path p = l0 → . . . → ln and two indices

0 ≤ i ≤ j ≤ n, we write p[i] for li , p[i : j] for the path

li → . . . → lj . Given two paths p1 and p2, we denote by

commonPrefix(p1,p2) the length of the longest prefix of p1
and p2. That is, commonPrefix(p1,p2) returns the index j if
and only if p1[0 : j] = p2[0 : j] and p1[0 : j + 1] , p2[0 : j + 1].
Further, we write lev(l , l ′) to denote the Levenshtein dis-

tance [8] between the two node labels l and l ′, which cap-

tures the smallest number of modifications—insertions, dele-

tions, and substitutions—required to change one label into

the other. As units for modifications, we use characters

for strings, while integers, bytes (which are abstracted to

constbyte and ⊤byte), and method names are treated as single

units. For example, it takes 1 modification (more precisely, 1

substitution) to change any method signature to a different

one. We define the Levenshtein similarity ratio between two

labels l and l ′ as:

LSR(l , l ′) = 1 −
lev(l , l ′)

max(|l |, |l ′ |)
.

The distance between paths p1 and p2 is pathDist(p1,p2) = 0

if p1 is identical to p2, and otherwise it is defined as:

pathDist(p1,p2) = 1 −
j + LSR(p1[j + 1],p2[j + 1])

max(|p1 |, |p2 |)
,

where j = commonPrefix(p1,p2) is the length of the longest

prefix of p1 and p2. In the numerator, we take the size of

the common prefix and add the result of the Levenshtein

similarity ratio between the remaining suffixes of p1 and p2.
In the denominator, we have the largest length of both paths.

Distance Between Two Usage Changes. We define the

distance between two sets of paths F1 and F2, pathsDist(F1, F2),
as the smallest distance that we obtain by first matching

the paths in both sets and then summing their pair-wise

path distance. Given two usage changes C1 = (F−
1
, F+

1
) and

C2 = (F−
2
, F+

2
), we define the distance to be the average over

the two distances between F−
1
and F−

2
and between F+

1
and F+

2
:

usageDist(C1,C2) =
pathsDist(F−

1
, F−

2
) + pathsDist(F+

1
, F+

2
)

2

.

The distance metric usageDist(C1,C2) allows us to compare

how semantically similar two usage changes are.

Hierarchical Clustering. We use an agglomerative hier-

archical clustering algorithm to group similar usage changes

and structure them in a tree. Agglomerative clustering first

introduces a leaf node in the tree for each usage change

and then merges the two closest clusters according to the

distance metric. As a distance metric we use the distance

between two usage changes. The distance between clusters

(also known as the linkage) is used to merge clusters of usage

changes (higher in the tree). We use complete linkage where

the distance between two clusters X and Y is given by:

clusterDist(X ,Y ) = maxC1∈X ,C2∈Y usageDist(C1,C2) .
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5 The DiffCode System
In this section, we first present DiffCode, a system which

implements the abstraction for usage changes described in

Section 3 together with the filtering and clustering proce-

dures presented in Section 4. In the following section, we

show how DiffCode can be used to infer semantic usage

changes to the Java Crypto API, based on thousands of code

modifications we have collected from GitHub.

5.1 System Overview
DiffCode is a new end-to-end system that implements the

usage changes abstraction for Java APIs. Our implementation

is in Python and spans roughly 7K lines of code.

DiffCode takes as input a set of program pairs (old and

new versions of a Java program) together with a target API

class, and outputs a list of semantic usage changes of the

target API class together with a clustering diagram of these

usage changes. The main component of DiffCode is a light-

weight AST-based program analyzer, described below.

AST-based Program Analyzer. DiffCode uses a custom

AST-based analyzer since many of the program versions

provided as input are partial programs, such as library code

without an explicit entry point and code snippets, that cannot

be easily compiled. Further, we opted for an efficient and

scalable analyzer that avoids heavy-weight static analysis,

such as SPARK’s points-to analysis [19].

Our program analyzer takes as input a GitHub username,

project name, and commit ID, which together identify a Java

project version. Additionally, it takes the target API class

for which we want to discover usage changes. Our analyzer

first finds all allocation sites of the target class (which corre-

spond to abstract objects). For each allocation site, located

in some method m, it finds the program’s entry methods

that can lead to executions that call method m. Note that

there may be multiple such entry methods (i.e., other than

main) if the code is a partial program or a library. For each

entry method, the analyzer performs a forward execution of

all relevant operations, such as object allocations and field

accesses, to track the set of possible values that can be as-

signed to fields and variables. At each branching point (e.g.,

an if statement), the analyzer forks the execution into two

executions and analyzes them independently. The result is a

set of executions with derived abstract states at each method

call. Each execution is used to derive a DAG as described in

Section 3.4. Our analysis is inter-procedural, and currently

does not support deep inheritance hierarchies and virtual

functions.

6 Case Study: Java Crypto API
We now describe a case study in which we use Java projects

collected from GitHub to learn semantic changes of the Java

Crypto API [26]. Extracting security fixes for the Java Crypto

API is relevant because: (i) developers often misuse this

API Class Description

Cipher A cryptographic cipher used for en-

cryption and decryption

IvParameterSpec An initialization vector (IV) used in ci-

phers that operate in feedback mode

(e.g. CBC)

MessageDigest An engine class designed to provide

the functionality of cryptographically

secure message digests such as SHA-1

or MD5

SecretKeySpec A constructor for secret keys a byte

array

SecureRandom An engine class that provides the func-

tionality of a Random Number Genera-

tor (RNG)

PBEKeySpec A user-chosen password that can be

used with password-based encryption

Figure 5.Target classes for learning semantic usage changes.

API [12, 22, 24], and (ii) crypto modes become obsolete over

time as security experts discover attacks, and thus new, up-

to-date security rules for the Java Crypto API are needed

(e.g, see [30]).

More concretely, in this section we address the follow-

ing research questions. First, we investigate the effective-

ness of our abstraction and filters on distilling semantic

code changes, and whether these are security fixes or buggy

changes. Second, we report on our experience in clustering

code changes and eliciting security rules. Finally, we investi-

gate the relevance of the elicited security rules by applying

these on Java projects collected from GitHub.

6.1 Experimental Setup

Data Set. To obtain our training dataset, we scanned over

30, 000 popular GitHub repositories. We selected the master

branches of projects that use the Java Crypto API and have at

least 30 commits. We duplicated projects in case the commit

history has a common prefix. We remark that our selection

method helps DiffCode ignore toy projects that are unlikely

to contain interesting code changes. Indeed, our method

selected some of the most starred Java projects excluding

forks. For training, our selection led to 461 Java projects from

397 distinct users.

We cloned these repositories and traversed the master

branch commits of each repository. We consider 6 target API

classes in our case study; see Figure 5. For each commit that

changes at least one target class, we fetched the versions

before and after the commit. Using this procedure, we col-

lected a total of 11, 551 code changes (i.e., pairs of programs)

for all of the target classes.
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Target Usage After filtering stage
API Class Changes fsame fadd frem fdup

Cipher 15829 419 204 116 75

IVParameterSpec 4967 58 24 12 11

MessageDigest 8277 116 78 27 17

SecretKeySpec 15543 226 120 55 45

SecureRandom 26008 309 131 26 21

PBEKeySpec 1549 29 21 17 17

Figure 6. Usage changes per target API class after ab-

straction and filtering. The actual commits are available at

http://diffcode.ethz.ch

6.2 Effectiveness of Abstraction and Filtering
In Figure 6, we give the number of usage changes for each

target API class and then show the effectiveness of our ab-

straction and filters. The second column gives the total num-

ber of usage changes, and the four columns to the right show

the number of usage changes that remain after each filtering

stage (see Section 4.2 for the list of stages). For example, the

filter fsame, which removes changes that do not affect the

target class, reduces the number of changes by more than

an order of magnitude (e.g. 419 down from 15, 829 for class
Cipher). Filtering out changes that add or remove API calls

of the target class, as well as removing duplicates further re-

duces the number of changes by another order of magnitude.

At the end, the number of remaining changes makes the

follow-up manual inspection feasible (e.g. only 75 changes

for the Cipher class).

Security Fixes vs Buggy Changes. Next, we address two

questions: (i) whether the collected code changes represent

security fixes or buggy changes and (ii) whether the filters
keep these while removing the non-semantic code changes.

To distinguish between security fixes and buggy changes,

we encoded five security rules supported in CryptoLint [12],

a security checker for crypto APIs. We denote these rules

CL1-CL5. For instance, the first rule CL1 states: “Do not use

ECB mode for encryption”.

For each change, we check whether a rule triggers in

the old version (before applying the change) and whether it

triggers in the new version (after applying the change). Based

on the result, we classify each code change as a: (i) security
fix, if a rule triggers in the old version but not in the new

version, (ii) buggy change, if a rule triggers in the new version

but not in the old version, and (iii) non-semantic change, if
the rule triggers identically in both versions.

In Figure 7, we give the number of usage changes classi-

fied into security fixes, buggy changes, and non-semantic

changes with respect to rules CL1-CL5. Note that the to-

tal number of changes varies across the rules as we count

only changes that are applicable to the rule. For example,

CL1 refers to the class Cipher, for which we have collected

Rule Change Total Filtered changes Remain.
Type Changes fsame fadd frem fdup changes

CL1 fix 8 0 0 0 1 7

bug 1 0 0 0 0 1

none 15820 15410 215 88 40 67

CL2 fix 1 0 0 0 0 1

bugs 0 0 0 0 0 0

none 4966 4909 34 12 1 10

CL3 fix 4 0 0 0 0 4

bug 1 0 0 0 0 1

none 15538 15317 106 65 10 40

CL4 fix 1 0 0 0 0 1

bug 0 0 0 0 0 0

none 1548 1520 8 4 0 16

CL5 fix 1 0 0 0 0 1

bug 1 0 0 0 0 1

none 1547 1520 8 4 0 15

Figure 7. Filtered security fixes ( fix ), buggy changes ( bug ),

and non-semantic changes (none) using the four filters. The

right-most column shows the type of changes that remain

after applying all filters.

15, 829 usage changes in total. In the figure, we also show

the number of usage changes removed by each filter.

The data shows two important findings. First, most code

changes have no-semantic meaning with respect to these

rules. The filters, however, effectively eliminate the non-

semantic changes, where the most effective filter is fsame
which can detect and eliminate code refactorings. Second,

the semantic changes are not filtered out. Only 1 semantic

change is eliminated by the fdup filter to remove a duplicate

security fix (see CL1).

The data in Figure 7 also shows that most of the changes

are indeed security fixes, not buggy changes. Namely, over

80% of the code changes correspond to actual security fixes.

6.3 Clustering Security Fixes and Eliciting Rules
Next, we report on our experience in eliciting rules from

the security fixes. We inspected each fix, together with any

other modifications that are similar (in terms of distance),

on GitHub. In more detail, we inspected the concrete code

patch, the commit message, and any additional comments

that describe the commit.

Clustering Security Fixes. We constructed a dendrogram

for each target API class, using the hierarchical clustering

algorithm described in Section 4.3. We depict a (partial) den-

drogram derived for the Cipher API class in Figure 8. This

dendrogram shows three usage changes. These changes show

that developers are switching from the insecure ECBmode of



Inferring Crypto API Rules from Code Changes PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

Cipher getInstance arg1:AES/ECB

Cipher getInstance arg1:AES/GCM

Cipher init arg3:IVParameterSpec

Cipher getInstance arg1:AES/ECB

Cipher getInstance arg1:AES/CBC

Cipher init arg3:IVParameterSpec

Cipher getInstance arg1:AES

Cipher getInstance arg1:AES/CBC

Cipher init arg3:IVParameterSpec

[5]

[6]

[4] [18]

...

arg1:AES/ECB

Rule R7

Figure 8. Partial hierarchical clustering for the Cipher API class. All three usage changes show a switch from the insecure

ECB mode of AES to the more secure CBC and GCM modes. The merge of the three usage changes identifies the security

rule R7 stating that the cipher should not be used in ECB mode. We give links to concrete GitHub revisions in the references.

AES to the more secure CBC and GCM modes. We also give

the concrete commits (with links in the references) that are

identified with these usage changes. The top-most two usage

changes are joined together to form a cluster, and then this

cluster is joined with the third usage change. We found such

information provided by the clustering helpful to navigate

through and inspect the security fixes.

Rules. We consider rules of the form t : φ where t ∈ Types
is a type and φ is a logical formula interpreted over a set

S ⊆ P(Methods×AStates) of method and abstract state pairs.

For example, the logical formula

φ ≡ ∃(m,σa) ∈ S .m = getInstance(X ) ∧ ∆a(X ) = SHA-1

is satisfied, denoted S |= φ, if the set S contains a pair (m,σa)

such thatm = getInstance(X ) and σa(X ) = SHA-1. A rule

t : φ matches an abstract object a of a given program with

abstract uses AUses if type(a) = t and AUses(a) |= φ. We

say that a rule t : φ is applicable to an abstract object a if

type(a) = t . For brevity, we write

getInstance(X ) ∧ X = SHA-1

as a shorthand for the logical formula given above. We some-

times conjoin multiple rules to express more complex ones.

For example, the composite rule (t1 : φ1) ∧ (t2 : φ2) matches

a program P if both t1 : φ1 and t2 : φ2 match some, possibly

different, abstract objects in P .

Elicited Rules. Using DiffCode on our data set of Java

projects, we managed to discover a number of different se-

curity rules, which we also validated by checking security

papers, blogs, and bulletins. In Figure 9 we list all security

rules. Out of these, R2, R7, R9, R10, R11, R12 are known

and have been documented. For details on these we refer the

reader to [12]. We next describe some of the other rules.

Rule R1 states that SHA-256 should be used instead of

SHA-1. Indeed, security researchers have recently announced

the first practical technique for generating a collision for

SHA-1 [30], and they have warned developers that it is rec-

ommended to switch to the more secure SHA-256.

Rule R3 states that the preferred mode for using the

SecureRandom class is SHA-1PRNG, which is initially seeded via

a combination of system attributes and the java.security en-

tropy gathering device. Later, we have found the motivation

to be described in [2].

Rule R4 states that SecureRandom.getInstanceStrong()

should be avoided on server-side code running on Solaris/Lin-

ux/MacOS where availability is important, as documented

in [28]. This is because SecureRandom.getInstanceStrong()

returns the NativePRNGBlockingmode of SecureRandom, which

may block and thus developers suggest to avoid it [28].

Rule R5 states that the BouncyCastle provider should

be used instead of the default Java Crypto API provider

because BouncyCastle does not have the 128 bit secret key

restriction [3].

Rule R6 detects that SecureRandom is vulnerable on An-

droid SDK versions 16, 17, and 18 if the Linux PRNG module

is not installed [1]. The implementation of the check HAS_LPRNG

is described in [1].

RuleR8 states that Cipher should not be used in DESmode

because this mode is no longer considered secure [23].

Rule R13 states that developers should add integrity after

having exchanged a symmetric key, which is frequently done

with an asynchronous cipher such as RSA. A common fix is

to switch to the AES cipher with or in combination with

HMAC [6]. Note that, to match vulnerable projects, rule R13
is expressed as a composite rule that refers to three distinct

objects – two objects of type Cipher and one object of type

Mac. We remark that the rule matches any projects that have

the two Cipher objects but lacks the required Mac object. In

particular, the rule does not explicitly define in which order

these objects are declared and used.

Overall, while some of these rules may be known to some

security researchers, with the DiffCode system we were
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ID Description Rule

R1 Use SHA-256 instead of SHA-1 [30] MessageDigest : getInstance(X ) ∧ X=SHA-1

R2 Do not use password-based encryption with iterations count less than 1000 [7] PBEKeySpec : <init>(_,_,X ,_) ∧ X<1000

R3 SecureRandom should be used with SHA-1PRNG [2] SecureRandom : <init>(X ) ∧ X,SHA-1PRNG

R4 SecureRandom with getInstanceStrong should be avoided SecureRandom : ¬getInstanceStrong

R5 Use the BouncyCastle provider for Cipher Cipher : getInstance(_,X ) ∧ X,BC

R6 The underlying PRNG is vulnerable on Android v16-18 [17] SecureRandom : <init>(_) ∧ ¬LPRNG ∧ MIN_SDK_VERSION≥16

R7 Do not use Cipher in AES/ECB mode [9] Cipher : getInstance(X )∧ (X=AES ∨ X=AES/ECB)

R8 Do not use Cipher with DES mode [23] Cipher : getInstance(X ) ∧ X=DES

R9 IvParameterSpec should not be initialized with a static byte array [9] IvParameterSpec : <init>(X ) ∧ X,⊤byte[]

R10 SecretKeySpec should not be static SecretKeySpec : <init>(X ) ∧ X,⊤byte[]

R11 Do not use password-based encryption with static salt PBEKeySpec : <init>(_,X ,_,_) ∧ X,⊤byte[]

R12 Do not use SecureRandom static seed SecureRandom : setSeed(X ) ∧ X,⊤byte[]

R13 Missing integrity check after symmetric key exchange [6] (Cipher : getInstance(X ) ∧ startsWith(X ,AES/CBC))

∧ (Cipher : getInstance(Y ) ∧ Y=RSA)

∧ ¬(Mac : getInstance(Z ) ∧ startsWith(Z ,Hmac)

Figure 9. Security rules derived from security fixes applied to the Java Crypto API.

able to systematically derive all of them. Further, DiffCode

enabled us to create a single checker for all of these rules.

On Automating Rule Elicitation. We remark that Diff-

Code can also automatically suggest a rule by constructing a

predicate that matches any use that has the features present

in the old versions and does not have those added to the new

versions. Note that this predicate would match any usage

that is not fixed according to the code changes. As a simple

example, consider the removed and added features depicted

in Figure 2(d). The generated security rule would be

Cipher : (getInstance(X ) ∧ X = AES)
∧(getInstance(Y ) ⇒ Y , AES/CBC/PKCS5Padding)
∧(<init>(X ′, _, _,Y ′) ⇒ Y ′ , IVParameterSpec)

This rule captures that AES Ciphers which use the default

AES mode, and neither use the AES/CBC/PKCS5Padding mode

nor pass an object of type IVParameterSpec to the construc-

tor, must be fixed. While using the above method one can

completely automate the generation of rules, identifying

whether a rule is security-relevant in a purely automated

manner is challenging and goes beyond the scope of this

work.

6.4 Relevance of The Elicited Security Rules
To evaluate the relevance of the discovered security rules,

we developed a security checker, called CryptoChecker,

that supports all rules in Figure 9. We ran CryptoChecker

on 519 Java projects. These include all 463 Java projects we

used for training as well as additional 56 projects which we

downloaded after eliciting the rules. We report the number

Rule Applicable (% of total) Matching (% of appl.)

R1 257 (49.5%) 89 (34.6%)

R2 64 (12.3%) 15 (23.4%)

R3 305 (58.8%) 289 (94.8%)

R4 305 (58.8%) 3 (1%)

R5 211 (40.7%) 206 (97.6%)

R6 59 (11.4%) 48 (81.4%)

R7 211 (40.7%) 60 (28.4%)

R8 211 (40.7%) 20 (9.5%)

R9 124 (23.9%) 7 (5.6%)

R10 232 (44.7%) 12 (5.2%)

R11 64 (12.3%) 7 (11%)

R12 305 (58.8%) 1 (0.3%)

R13 8 (1.5%) 4 (50%)

Figure 10. Rule violations for the analyzed projects.

of discovered rule violations in Figure 10. For each security

rule, we give (i) the total number of projects that have at least

one usage applicable to the security rules, and (ii) the number

of projects that have at least one insecure usage according to
our rules. For instance, rule R1 is only applicable to usages

of the API class MessageDigest as it stipulates how classes

of type MessageDigest should be instantiated. The number

257 in the first row thus indicates that there are 257 projects

(49.5% of the 519 projects) that have at least one usage of

type MessageDigest. The matching column indicates that 89

out of the 257 projects (34.6%) have at least one usage that
matches rule R1 .
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Overall, the data in Figure 10 confirms recent findings that

developers struggle to use the Java Crypto API correctly [24].

In > 57% of the projects CryptoChecker discovers at least

one security rule that is matched. We remark that Cryp-

toLint [12], a similar checker to CryptoChecker, can be

used to check some (but not all) of CryptoChecker’s rules.

However, since CryptoLint is not publicly available, we were

unable to compare our results.

Finally, we used some of the reports of CryptoChecker

to report 15 security violations, 3 of which were confirmed.

The reported issues are listed at http://diffcode.ethz.ch.

7 Related Work
In this section, we survey several recent works that are most

closely related to ours.

Misuse of Crypto APIs. The authors of [22] describe a

set of security guidelines related to the use crypto APIs, e.g.

that password-based encryption must be used with a ran-

dom seed, encryption keys must not be hard-coded, and so

forth. Applications that do not follow these guidelines are

considered vulnerable. They examine 49 Android applica-

tions and show that 87.8% of them suffer from at least one

vulnerability.

The authors of [11] present a manual analysis of different

crypto APIs (OpenSSL, Java, PyCrypto, and others) and dis-

cuss seven problems related to API misuses, such as reuse of

initialization vectors, lack of code samples in the API docu-

mentation, safe API defaults, and so forth. The scope of this

report is on crypto APIs, not on the applications that use

these APIs. In [24], the authors report on a survey to discover

why developers often fail to use crypto APIs correctly. They

also present suggestions to API developers that may mitigate

the problem of API misuse.

Detecting Misuse of Crypto APIs. Several works con-

sider the problem of automatically detectingmisuse of crypto

API in Java applications. OWASP provides a list of static

analysis tools [5] that target security issues, however these

tools have a very limited set of crypto checks (e.g. see Find-

SecBugs [4]). CryptoLint [12] is a specialized system that

checks Android applications for crypto API misuses with six

fixed rules, such as “Do not use ECB mode for encryption”.

To check these properties, CryptoLint statically computes a

program slice immediately before invoking a crypto API and

checks properties on the arguments passed to that API. They

evaluate >11K Android applications and show that 88% of

the applications violate at least one rule. Compared to Cryp-

toLint, CryptoChecker supports a more comprehensive set

of security rules.

The CMA analyzer, presented in [29] is very similar to [12]

and also targets finding misuses of crypto APIs in Android.

Compared to [12], CMA considers more security rules.

AmanDroid [31] is a system for precise static analysis of

Android applications. AmanDroid computes a dependency

graph that captures control- and data-flow dependencies for

all objects. The security analysis is then phrased as graph

queries over the dependency graph. For example, we can

check an application for absence of data leaks by checking

that there is no path from a source to a sink. AmanDroid can

be also used to check whether applications misuse crypto

APIs by encoding the rules of [11, 13, 24] in terms of graph

queries. In [16], the authors explain the concepts behind

AmanDroid in a more general, cleaner setting.

Misuse of crypto APIs is not an Android or Java-specific

problem: the evaluation of a dynamic analysis tool for iOS [20]

found that over 65% of the tested iOS applications suffer from

vulnerabilities due to API misuse.

Repairing Misuse of Crypto APIs. The CDRep system

presented in [22] can be used to detect and repair misuses

of Android’s crypto API. For the detection step, CDRep per-

forms an analysis similar to the one presented in [12]. Given

an Android APK, CDRep detects the instructions responsible

for a particular misuse of the crypto API. The responsible

instructions include the call to a particular crypto API, called

the indicator instruction, and instructions on which the in-

dicator instruction depends. For example, one security rule

states that applicationsmust not use encryption in ECBmode.

The responsible instructions that violate this rule would in-

clude: the call to the encrypt method, the instruction that

constructs the encryption object, and the instruction that

initializes the encryption-scheme string (e.g. “AES/ECB”)

passed to the encryption constructor. After identifying the

instructions responsible for a given cryptographic misuse,

CDRep uses manually pre-defined patch templates to suggest

candidate repairs.

Learning from Code. Several prior works check for API

errors by first learning a likely specification of a program

and its API calls [13, 18]. The recent APISan system [32]

automatically infers the correct usage of APIs by observing

the contexts of the calls from multiple projects. For exam-

ple, APISan can learn that the return value of a method is

typically checked for null and then it can report outliers to

this learned specification. This allows APISan to check large

codebases in a precise and scalable way for given predefined

types of issues such as null dereferences and overflows. In

contrast to these works, we focus on crypto APIs for which

(i) we do not know the kind of issues that may be present and

(ii) the majority of the projects misuse the APIs. The work

of Long and Rinard [21] considers the reverse task of ours

and learns from correct code to guide automatic generation

of bug fixes.

Learning from Code Changes. Several works propose

to learn from previous code changes to help developers com-

plete a new change. A system by Zimmermann et al. [33]
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warns developers if a newly developed change only does a

subset of what other changes did. A more recent work by

Nguyen et al. [25] developed a code completion engine that

precisely predicts code for new changes based on code in

previous code changes. In contrast to our approach, however,

these works cannot find issues in existing code and make

predictions only for code modifications.

8 Conclusion
We presented a new data driven approach for extracting

semantically meaningful API usage changes from concrete

code fixes collected by processing public repositories. The

approach is based on an abstraction for code changes which

captures the implications of a change to objects of the Crypto

API. These implications are represented as semantic features

that are removed from the old and added to the new version

of the program. Our abstraction enables us to distill relevant

semantic changes using filters that eliminate purely syntactic

modifications. As a final step we (hierarchically) cluster the

remaining, semantically meaningful security fixes, enabling

us to derive new security rules.

We also presented DiffCode, a system that implements

our data driven approach. We appliedDiffCode to Java code

changes collected from GitHub and extracted security fixes

for the Java Crypto API. Based on these results, we identi-

fied 13 relevant security rules which we implemented in a

new security checker called CryptoChecker. We evaluated

CryptoChecker on a number of public Java projects, dis-

covering misuses of the Java Crypto API in > 57% of the

analyzed projects.

The data driven approach presented in this work allowed

us to systematically derive relevant security rules some of

which are missing from existing checkers. We believe that

this work is an important step towards solving the general

problem of automatically deriving API misuse checks.
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